Qlearnkit python library

Python Versions License Build Upload Python Package PypI Versions

Qlearnkit is a simple python library implementing some fundamental Machine Learning models and algorithms for a gated quantum computer, built on top of Qiskit and, optionally, Pennylane.

Installation

We recommend installing qlearnkit with pip

pip install qlearnkit

Note: pip will install the latest stable qlearnkit. However, the main branch of qlearnkit is in active development. If you want to test the latest scripts or functions please refer to development notes.

Optional Install

Via pip, you can install qlearnkit with the optional extension packages dependent on pennylane. To do so, run

pip install qlearnkit['pennylane']

Docker Image

You can also use qlearnkit via Docker building the image from the provided Dockerfile

docker build -t qlearnkit -f docker/Dockerfile .

then you can use it like this

docker run -it --rm -v $PWD:/tmp -w /tmp qlearnkit python ./script.py

Getting started with Qlearnkit

Now that Qlearnkit is installed, it’s time to begin working with the Machine Learning module. Let’s try an experiment using the QKNN Classifier algorithm to train and test samples from a data set to see how accurately the test set can be classified.

from qlearnkit.algorithms import QKNeighborsClassifier
from qlearnkit.encodings import AmplitudeEncoding
from qiskit import BasicAer
from qiskit.utils import QuantumInstance, algorithm_globals

from qlearnkit.datasets import load_iris

seed = 42
algorithm_globals.random_seed = seed

train_size = 32
test_size = 8
n_features = 4  # all features

# Use iris data set for training and test data
X_train, X_test, y_train, y_test = load_iris(train_size, test_size, n_features)

quantum_instance = QuantumInstance(BasicAer.get_backend('qasm_simulator'),
                                   shots=1024,
                                   optimization_level=1,
                                   seed_simulator=seed,
                                   seed_transpiler=seed)

encoding_map = AmplitudeEncoding(n_features=n_features)

qknn = QKNeighborsClassifier(
    n_neighbors=3,
    quantum_instance=quantum_instance,
    encoding_map=encoding_map
)

qknn.fit(X_train, y_train)

print(f"Testing accuracy: "
      f"{qknn.score(X_test, y_test):0.2f}")

Development notes

After cloning the official repository, create a virtual environment

python3 -m venv .venv

and activate it

source .venv/bin/activate

now you can install the requirements

pip install -r requirements-dev.txt

now run the tests

make test

Make sure to run

pre-commit install

to set up the git hook scripts. Now pre-commit will run automatically on git commit!