Algorithms
Kernel Method Mixin
Quantum Estimator
- class QuantumEstimator(encoding_map=None, quantum_instance=None)[source]
 Bases:
sklearn.base.TransformerMixin- Parameters
 encoding_map – Map to classical data to quantum states. This class does not impose any constraint on it. It can either be a custom encoding map or a qiskit FeatureMap
quantum_instance – The quantum instance to set. Can be a
QuantumInstanceor aBackend
- abstract fit(X_train, y_train)[source]
 Fits the model using X as training dataset and y as training labels
- Parameters
 X_train – training dataset
y_train – training labels
- abstract predict(X_test)[source]
 Predicts the labels associated to the unclassified data X_test
- Parameters
 X_test – the unclassified data
- Return type
 ndarray- Returns
 the labels associated to X_test
- property quantum_instance: qiskit.utils.quantum_instance.QuantumInstance
 Returns the quantum instance to evaluate the circuit.
- Return type
 QuantumInstance
- property encoding_map
 Returns the Encoding Map
- execute(qcircuits)[source]
 Executes the given quantum circuit
- Parameters
 qcircuits – a
QuantumCircuitor a list ofthis type to be executed
- Return type
 Optional[Result]- Returns
 the execution results
- abstract score(X, y, sample_weight=None)[source]
 Returns a score of this model given samples and true values for the samples. In case of classification, this value should correspond to mean accuracy, in case of regression, the coefficient of determination \(R^2\) of the prediction. In case of clustering, the y parameter is typically ignored.
- Parameters
 X – array-like of shape (n_samples, n_features)
y – array-like of labels of shape (n_samples,)
sample_weight – array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight.
- Return type
 float- Returns
 a float score of the model.