Algorithms
Kernel Method Mixin
Quantum Estimator
- class QuantumEstimator(encoding_map=None, quantum_instance=None)[source]
Bases:
sklearn.base.TransformerMixin
- Parameters
encoding_map – Map to classical data to quantum states. This class does not impose any constraint on it. It can either be a custom encoding map or a qiskit FeatureMap
quantum_instance – The quantum instance to set. Can be a
QuantumInstance
or aBackend
- abstract fit(X_train, y_train)[source]
Fits the model using X as training dataset and y as training labels
- Parameters
X_train – training dataset
y_train – training labels
- abstract predict(X_test)[source]
Predicts the labels associated to the unclassified data X_test
- Parameters
X_test – the unclassified data
- Return type
ndarray
- Returns
the labels associated to X_test
- property quantum_instance: qiskit.utils.quantum_instance.QuantumInstance
Returns the quantum instance to evaluate the circuit.
- Return type
QuantumInstance
- property encoding_map
Returns the Encoding Map
- execute(qcircuits)[source]
Executes the given quantum circuit
- Parameters
qcircuits – a
QuantumCircuit
or a list ofthis type to be executed
- Return type
Optional
[Result
]- Returns
the execution results
- abstract score(X, y, sample_weight=None)[source]
Returns a score of this model given samples and true values for the samples. In case of classification, this value should correspond to mean accuracy, in case of regression, the coefficient of determination \(R^2\) of the prediction. In case of clustering, the y parameter is typically ignored.
- Parameters
X – array-like of shape (n_samples, n_features)
y – array-like of labels of shape (n_samples,)
sample_weight – array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight.
- Return type
float
- Returns
a float score of the model.